Optimizing snake locomotion in the plane

نویسنده

  • Silas Alben
چکیده

We develop a numerical scheme to determine which planar snake motions are optimal for locomotory efficiency, across a wide range of frictional parameter space. For a large coefficient of transverse friction, we show that retrograde traveling waves are optimal. We give an asymptotic analysis showing that the optimal wave amplitude decays as the -1/4 power of the coefficient of transverse friction. This result agrees well with the numerical optima. At the other extreme, zero coefficient of transverse friction, we propose a triangular direct wave which is optimal. Between these two extremes, a variety of complex, locally optimal motions are found. Some of these can be classified as standing waves (or ratcheting motions).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing snake locomotion on an inclined plane.

We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and co...

متن کامل

Multiple-objective Optimization of Serpentine Locomotion with Snake Robot by Using the NSGA

This paper starts with developing kinematic and dynamic model of a snake shape robot in serpentine locomotion and finishes with actual experimentation. At the beginning the symmetrical and unsymmetrical serpenoid curves are introduced. Kinematics and dynamics of a snake robot on flat and inclined surfaces are obtained for a general n-link robot. SimMechanics toolbox of MATLAB software is employ...

متن کامل

Perception-Driven Obstacle-Aided Locomotion for Snake Robots: The State of the Art, Challenges and Possibilities

In nature, snakes can gracefully traverse a wide range of different and complex environments. Snake robots that can mimic this behaviour could be fitted with sensors and transport tools to hazardous or confined areas that other robots and humans are unable to access. In order to carry out such tasks, snake robots must have a high degree of awareness of their surroundings (i.e., perception-drive...

متن کامل

Bio-inspired locomotion for a modular snake robot [7321-14]

Inspired by the snake locomotion, modular snake robots have different locomotion capabilities by coordinating their internal degrees of freedom. They have the potential to access restricted spaces where humans cannot go. They can also traverse rough terrains while conventional wheeled and legged robots cannot. Modular robots have other features including versatility, robustness, low-cost, and f...

متن کامل

A CPG-based Control Architecture for 3D Locomotion of a snake-like robot A CPG-based Control Architecture for 3D Locomotion of a snake-like robot

In this paper, a biologically inspired control architecture for a snake-like robot is proposed to achieve 3D locomotion and realize continuously free gait transition. Based on a novel central pattern generator(CPG) model, which is achieved from the perspective of network synchronization, the control architecture integrates three functional parts. First, following the convergence behavior of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013